You are viewing documentation for Kubernetes version: v1.20
Kubernetes v1.20 documentation is no longer actively maintained. The version you are currently viewing is a static snapshot. For up-to-date documentation, see the latest version.
Reconfigure a Node's Kubelet in a Live Cluster
Kubernetes v1.11 [beta]
Dynamic Kubelet Configuration allows you to change the configuration of each kubelet in a running Kubernetes cluster, by deploying a ConfigMap and configuring each Node to use it.
Warning: All kubelet configuration parameters can be changed dynamically, but this is unsafe for some parameters. Before deciding to change a parameter dynamically, you need a strong understanding of how that change will affect your cluster's behavior. Always carefully test configuration changes on a small set of nodes before rolling them out cluster-wide. Advice on configuring specific fields is available in the inlineKubeletConfiguration
.
Before you begin
You need to have a Kubernetes cluster.
You also need kubectl v1.11 or higher, configured to communicate with your cluster.
Your Kubernetes server must be at or later than version v1.11.
To check the version, enter kubectl version
.
Your cluster API server version (eg v1.12) must be no more than one minor
version away from the version of kubectl that you are using. For example,
if your cluster is running v1.16 then you can use kubectl v1.15, v1.16
or v1.17; other combinations
aren't supported.
Some of the examples use the command line tool
jq. You do not need jq
to complete the task,
because there are manual alternatives.
For each node that you're reconfiguring, you must set the kubelet
--dynamic-config-dir
flag to a writable directory.
Reconfiguring the kubelet on a running node in your cluster
Basic workflow overview
The basic workflow for configuring a kubelet in a live cluster is as follows:
- Write a YAML or JSON configuration file containing the kubelet's configuration.
- Wrap this file in a ConfigMap and save it to the Kubernetes control plane.
- Update the kubelet's corresponding Node object to use this ConfigMap.
Each kubelet watches a configuration reference on its respective Node object. When this reference changes, the kubelet downloads the new configuration, updates a local reference to refer to the file, and exits. For the feature to work correctly, you must be running an OS-level service manager (such as systemd), which will restart the kubelet if it exits. When the kubelet is restarted, it will begin using the new configuration.
The new configuration completely overrides configuration provided by --config
,
and is overridden by command-line flags. Unspecified values in the new configuration
will receive default values appropriate to the configuration version
(e.g. kubelet.config.k8s.io/v1beta1
), unless overridden by flags.
The status of the Node's kubelet configuration is reported via
Node.Status.Config
. Once you have updated a Node to use the new
ConfigMap, you can observe this status to confirm that the Node is using the
intended configuration.
This document describes editing Nodes using kubectl edit
.
There are other ways to modify a Node's spec, including kubectl patch
, for
example, which facilitate scripted workflows.
This document only describes a single Node consuming each ConfigMap. Keep in mind that it is also valid for multiple Nodes to consume the same ConfigMap.
Warning: While it is possible to change the configuration by updating the ConfigMap in-place, this causes all kubelets configured with that ConfigMap to update simultaneously. It is much safer to treat ConfigMaps as immutable by convention, aided bykubectl
's--append-hash
option, and incrementally roll out updates toNode.Spec.ConfigSource
.
Automatic RBAC rules for Node Authorizer
Previously, you were required to manually create RBAC rules to allow Nodes to access their assigned ConfigMaps. The Node Authorizer now automatically configures these rules.
Generating a file that contains the current configuration
The Dynamic Kubelet Configuration feature allows you to provide an override for the entire configuration object, rather than a per-field overlay. This is a simpler model that makes it easier to trace the source of configuration values and debug issues. The compromise, however, is that you must start with knowledge of the existing configuration to ensure that you only change the fields you intend to change.
The kubelet loads settings from its configuration file, but you can set command line flags to override the configuration in the file. This means that if you only know the contents of the configuration file, and you don't know the command line overrides, then you do not know the running configuration either.
Because you need to know the running configuration in order to override it,
you can fetch the running configuration from the kubelet. You can generate a
config file containing a Node's current configuration by accessing the kubelet's
configz
endpoint, through kubectl proxy
. The next section explains how to
do this.
Caution: The kubelet'sconfigz
endpoint is there to help with debugging, and is not a stable part of kubelet behavior. Do not rely on the behavior of this endpoint for production scenarios or for use with automated tools.
For more information on configuring the kubelet via a configuration file, see Set kubelet parameters via a config file).
Generate the configuration file
Note: The steps below use thejq
command to streamline working with JSON. To follow the tasks as written, you need to havejq
installed. You can adapt the steps if you prefer to extract thekubeletconfig
subobject manually.
Choose a Node to reconfigure. In this example, the name of this Node is referred to as
NODE_NAME
.Start the kubectl proxy in the background using the following command:
kubectl proxy --port=8001 &
Run the following command to download and unpack the configuration from the
configz
endpoint. The command is long, so be careful when copying and pasting. If you use zsh, note that common zsh configurations add backslashes to escape the opening and closing curly braces around the variable name in the URL. For example:${NODE_NAME}
will be rewritten as$\{NODE_NAME\}
during the paste. You must remove the backslashes before running the command, or the command will fail.NODE_NAME="the-name-of-the-node-you-are-reconfiguring"; curl -sSL "http://localhost:8001/api/v1/nodes/${NODE_NAME}/proxy/configz" | jq '.kubeletconfig|.kind="KubeletConfiguration"|.apiVersion="kubelet.config.k8s.io/v1beta1"' > kubelet_configz_${NODE_NAME}
Note: You need to manually add thekind
andapiVersion
to the downloaded object, because those fields are not reported by theconfigz
endpoint.
Edit the configuration file
Using a text editor, change one of the parameters in the
file generated by the previous procedure. For example, you
might edit the parameter eventRecordQPS
, that controls
rate limiting for event recording.
Push the configuration file to the control plane
Push the edited configuration file to the control plane with the following command:
kubectl -n kube-system create configmap my-node-config --from-file=kubelet=kubelet_configz_${NODE_NAME} --append-hash -o yaml
This is an example of a valid response:
apiVersion: v1
kind: ConfigMap
metadata:
creationTimestamp: 2017-09-14T20:23:33Z
name: my-node-config-gkt4c2m4b2
namespace: kube-system
resourceVersion: "119980"
uid: 946d785e-998a-11e7-a8dd-42010a800006
data:
kubelet: |
{...}
You created that ConfigMap inside the kube-system
namespace because the kubelet
is a Kubernetes system component.
The --append-hash
option appends a short checksum of the ConfigMap contents
to the name. This is convenient for an edit-then-push workflow, because it
automatically, yet deterministically, generates new names for new resources.
The name that includes this generated hash is referred to as CONFIG_MAP_NAME
in the following examples.
Set the Node to use the new configuration
Edit the Node's reference to point to the new ConfigMap with the following command:
kubectl edit node ${NODE_NAME}
In your text editor, add the following YAML under spec
:
configSource:
configMap:
name: CONFIG_MAP_NAME # replace CONFIG_MAP_NAME with the name of the ConfigMap
namespace: kube-system
kubeletConfigKey: kubelet
You must specify all three of name
, namespace
, and kubeletConfigKey
.
The kubeletConfigKey
parameter shows the kubelet which key of the ConfigMap
contains its config.
Observe that the Node begins using the new configuration
Retrieve the Node using the kubectl get node ${NODE_NAME} -o yaml
command and inspect
Node.Status.Config
. The config sources corresponding to the active
,
assigned
, and lastKnownGood
configurations are reported in the status.
- The
active
configuration is the version the kubelet is currently running with. - The
assigned
configuration is the latest version the kubelet has resolved based onNode.Spec.ConfigSource
. - The
lastKnownGood
configuration is the version the kubelet will fall back to if an invalid config is assigned inNode.Spec.ConfigSource
.
ThelastKnownGood
configuration might not be present if it is set to its default value,
the local config deployed with the node. The status will update lastKnownGood
to
match a valid assigned
config after the kubelet becomes comfortable with the config.
The details of how the kubelet determines a config should become the lastKnownGood
are
not guaranteed by the API, but is currently implemented as a 10-minute grace period.
You can use the following command (using jq
) to filter down
to the config status:
kubectl get no ${NODE_NAME} -o json | jq '.status.config'
The following is an example response:
{
"active": {
"configMap": {
"kubeletConfigKey": "kubelet",
"name": "my-node-config-9mbkccg2cc",
"namespace": "kube-system",
"resourceVersion": "1326",
"uid": "705ab4f5-6393-11e8-b7cc-42010a800002"
}
},
"assigned": {
"configMap": {
"kubeletConfigKey": "kubelet",
"name": "my-node-config-9mbkccg2cc",
"namespace": "kube-system",
"resourceVersion": "1326",
"uid": "705ab4f5-6393-11e8-b7cc-42010a800002"
}
},
"lastKnownGood": {
"configMap": {
"kubeletConfigKey": "kubelet",
"name": "my-node-config-9mbkccg2cc",
"namespace": "kube-system",
"resourceVersion": "1326",
"uid": "705ab4f5-6393-11e8-b7cc-42010a800002"
}
}
}
(if you do not have jq
, you can look at the whole response and find Node.Status.Config
by eye).
If an error occurs, the kubelet reports it in the Node.Status.Config.Error
structure. Possible errors are listed in
Understanding Node.Status.Config.Error messages.
You can search for the identical text in the kubelet log for additional details
and context about the error.
Make more changes
Follow the workflow above to make more changes and push them again. Each time
you push a ConfigMap with new contents, the --append-hash
kubectl option creates
the ConfigMap with a new name. The safest rollout strategy is to first create a
new ConfigMap, and then update the Node to use the new ConfigMap.
Reset the Node to use its local default configuration
To reset the Node to use the configuration it was provisioned with, edit the
Node using kubectl edit node ${NODE_NAME}
and remove the
Node.Spec.ConfigSource
field.
Observe that the Node is using its local default configuration
After removing this subfield, Node.Status.Config
eventually becomes
empty, since all config sources have been reset to nil
, which indicates that
the local default config is assigned
, active
, and lastKnownGood
, and no
error is reported.
kubectl patch
example
You can change a Node's configSource using several different mechanisms.
This example uses kubectl patch
:
kubectl patch node ${NODE_NAME} -p "{\"spec\":{\"configSource\":{\"configMap\":{\"name\":\"${CONFIG_MAP_NAME}\",\"namespace\":\"kube-system\",\"kubeletConfigKey\":\"kubelet\"}}}}"
Understanding how the kubelet checkpoints config
When a new config is assigned to the Node, the kubelet downloads and unpacks the
config payload as a set of files on the local disk. The kubelet also records metadata
that locally tracks the assigned and last-known-good config sources, so that the
kubelet knows which config to use across restarts, even if the API server becomes
unavailable. After checkpointing a config and the relevant metadata, the kubelet
exits if it detects that the assigned config has changed. When the kubelet is
restarted by the OS-level service manager (such as systemd
), it reads the new
metadata and uses the new config.
The recorded metadata is fully resolved, meaning that it contains all necessary
information to choose a specific config version - typically a UID
and ResourceVersion
.
This is in contrast to Node.Spec.ConfigSource
, where the intended config is declared
via the idempotent namespace/name
that identifies the target ConfigMap; the kubelet
tries to use the latest version of this ConfigMap.
When you are debugging problems on a node, you can inspect the kubelet's config metadata and checkpoints. The structure of the kubelet's checkpointing directory is:
- --dynamic-config-dir (root for managing dynamic config)
| - meta
| - assigned (encoded kubeletconfig/v1beta1.SerializedNodeConfigSource object, indicating the assigned config)
| - last-known-good (encoded kubeletconfig/v1beta1.SerializedNodeConfigSource object, indicating the last-known-good config)
| - checkpoints
| - uid1 (dir for versions of object identified by uid1)
| - resourceVersion1 (dir for unpacked files from resourceVersion1 of object with uid1)
| - ...
| - ...
Understanding Node.Status.Config.Error
messages
The following table describes error messages that can occur when using Dynamic Kubelet Config. You can search for the identical text in the Kubelet log for additional details and context about the error.
Error Message | Possible Causes |
---|---|
failed to load config, see Kubelet log for details | The kubelet likely could not parse the downloaded config payload, or encountered a filesystem error attempting to load the payload from disk. |
failed to validate config, see Kubelet log for details | The configuration in the payload, combined with any command-line flag overrides, and the sum of feature gates from flags, the config file, and the remote payload, was determined to be invalid by the kubelet. |
invalid NodeConfigSource, exactly one subfield must be non-nil, but all were nil | Since Node.Spec.ConfigSource is validated by the API server to contain at least one non-nil subfield, this likely means that the kubelet is older than the API server and does not recognize a newer source type. |
failed to sync: failed to download config, see Kubelet log for details | The kubelet could not download the config. It is possible that Node.Spec.ConfigSource could not be resolved to a concrete API object, or that network errors disrupted the download attempt. The kubelet will retry the download when in this error state. |
failed to sync: internal failure, see Kubelet log for details | The kubelet encountered some internal problem and failed to update its config as a result. Examples include filesystem errors and reading objects from the internal informer cache. |
internal failure, see Kubelet log for details | The kubelet encountered some internal problem while manipulating config, outside of the configuration sync loop. |
What's next
- For more information on configuring the kubelet via a configuration file, see Set kubelet parameters via a config file.
- See the reference documentation for
NodeConfigSource
- Learn more about kubelet configuration by checking the
KubeletConfiguration
reference.